Polymorphisms in the human cysteine-rich secretory protein 2 (CRISP2) gene in Australian men.
نویسندگان
چکیده
BACKGROUND Cysteine-rich secretory protein 2 (CRISP2) is localized to the human sperm acrosome and tail. It can regulate ryanodine receptors Ca(2+) gating and binds to mitogen-activated protein kinase kinase kinase 11 in the acrosome and gametogenetin 1 (GGN1) in the tail. METHODS AND RESULTS In order to test the hypothesis that CRISP2 variations contribute to male infertility, we screened coding and flanking intronic regions in 92 infertile men with asthenozoo- and/or teratozoospermia and 176 control men using denaturing HPLC and sequencing. There were 21 polymorphisms identified, including 13 unreported variations. Three SNPs resulted in amino acid substitutions: L59V, M176I and C196R. All were only present in a heterozygous state and found in fertile men. However, the C196R polymorphism was of particular interest as it resulted in the loss of a strictly conserved cysteine involved in intramolecular disulphide bonding. Screening of an additional 637 infertile men identified 23 heterozygous C196R men to give an overall frequency of 3.6%, compared with 3.4% in control men. The functional significance of the C196R polymorphism was defined using a yeast two-hybrid assay. The C196R substitution resulted in the loss of CRISP2-GGN1 binding. CONCLUSIONS Although none of the many polymorphisms identified herein showed a significant association with male infertility, functional studies suggested that the C196R polymorphism may compromise CRISP2 function.
منابع مشابه
MicroRNA-27a-mediated repression of cysteine-rich secretory protein 2 translation in asthenoteratozoospermic patients
Cysteine-rich secretory protein 2 (CRISP2) is an important protein in spermatozoa that plays roles in modulating sperm flagellar motility, the acrosome reaction, and gamete fusion. Spermatozoa lacking CRISP2 exhibit low sperm motility and abnormal morphology. However, the molecular mechanisms underlying the reduction of CRISP2 in asthenoteratozoospermia (ATZ) remain unknown. In this study, low ...
متن کاملAB035. The expression of cysteine-rich secretory protein 2 (CRISP2) and its specific regulator mir-27b in the spermatozoa of patients with asthenozoospermia
Cysteine-rich secretory protein 2 (CRISP2) is an important sperm protein and plays roles in spermatogenesis, modulation of flagellar motility, acrosome reaction, and gamete fusion. Clinical evidence shows a reduced CRISP2 expression in spermatozoa from asthenozoospermic patients, but the molecular mechanism underlying its reduction remains unknown. Herein, we carried out a study focusing on the...
متن کاملParticipation of cysteine-rich secretory proteins (CRISP) in mammalian sperm-egg interaction.
Mammalian fertilization is a complex multi-step process mediated by different molecules present on both gametes. CRISP1 (cysteine-rich secretory protein 1) is an epididymal protein thought to participate in gamete fusion through its binding to egg-complementary sites. Structure-function studies using recombinant fragments of CRISP1 as well as synthetic peptides reveal that its egg-binding abili...
متن کاملPathogen-Related Yeast (PRY) proteins and members of the CAP superfamily are secreted sterol-binding proteins.
Sterols and related membrane-perturbing agents are subject to a quality control cycle. Compounds that fail to pass this control are acetylated and secreted into the culture media, whereas lipids that pass the cycle are deacetylated and retained within the cell. Here we describe the identification of a family of conserved proteins, the Pathogen-Related Yeast (PRY) proteins, as a class of sterol-...
متن کاملAB036. Effects and its potential mechanisms of Cox-2 inhibitors on ejaculation latency of rat with experimental autoimmune prostatitis
Background: Cysteine-rich secretory protein 2 (CRISP2) is an important sperm protein and plays roles in spermatogenesis, modulation of flagellar motility, acrosome reaction, and gamete fusion. Clinical evidence shows a reduced CRISP2 expression in spermatozoa from asthenozoospermic patients, but the molecular mechanism underlying its reduction remains unknown. Herein, we carried out a study foc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human reproduction
دوره 23 9 شماره
صفحات -
تاریخ انتشار 2008